\chapter*{Executive summary}

IPsec is a set of protocols that provides communication security for computers using IP-based communication networks. It provides authentication and confidentiality services on a packet level. To support the IPsec security, a key management protocol called ISAKMP is used. ISAKMP uses public-key cryptographic techniques to set up keys between the different parties to be used with IPsec.

Both IPsec and ISAKMP are too complex. [a protocol is too complex only relative to a specified set of requirements that are satisfied by a simpler protocol. To substantiate this observation, one ought to define the requirements that one believes the protocol is trying top satisfy, and then  offer a simpler protocol.] This high complexity leads to errors. We have found security flaws in both IPsec and ISAKMP, and expect that there are many more. We expect any actual implementation to contain many more errors, some of which will cause security weaknesses. These protocols give the impression of having been designed by a committee: they try to be everything for everybody at the cost of complexity. For normal standards, that is bad enough; for security systems, it is catastrophic. In our opinion, the complexity of both IPsec and ISAKMP can be reduced by a large factor without a significant loss of functionality.

IPsec is in better shape than ISAKMP. The description and definitions are reasonably clear. A careful implementation of IPsec can achieve a good level of security. Unfortunately, IPsec by itself is not a very useful protocol. Use on a large scale requires the key management functions of ISAKMP. [while I would tend to agree with this observation, I should note that a non-trivial number of IPsec implementations, used in constrained contexts, are manually keyed.]
ISAKMP is currently not in a suitable state for implementation. Major work will be required to get it to that point. There are many security-critical errors, as well as many unnecessary cross-dependencies within the protocol. These should all be eliminated before a new evaluation is done.

Based on our analysis, we recommend that IPsec and ISAKMP not be used for confidential information. At the moment we cannot recommend a direct alternative. Some applications might be able to use SSL \cite{SSLv3Nov96}, which in our opinion is a much better protocol that provides a much higher level of security when used appropriately.
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\chapter{Introduction}

At the request of NSA, Counterpane has conducted a security review of the IPsec and ISAKMP security protocols.

This evaluation is based on RFCs 2401--2411 and RFC 2451  \cite{RFC2401,RFC2402,RFC2403,RFC2404,RFC2405,RFC2406,RFC2407,RFC2408,RFC2409,RFC2410,RFC2411,RFC2451}. The Oakley protocol \cite{RFC2412} is only an informational RFC; it is not part of the standard and is not used in ISAKMP. RFC documents are available from {\tt ftp:ftp.isi.edu\slash in-notes\slash rfc<n>.txt}. 

As \cite{RFC2401} states: ``The suite of IPsec protocols and associated default algorithms are designed to provide high quality security for Internet traffic. However, the security offered by use of these protocols ultimately depends on the quality of the their implementation, which is outside the scope of this set of standards.  Moreover, the security of a computer system or network is a function of many factors, including personnel, physical, procedural, compromising emanations, and computer security practices.  Thus IPsec is only one part of an overall system security architecture.'' This evaluation only deals with the IPsec and ISAKMP specifications and is not directly concerned with any of the other factors. However, we do comment on aspects of the specifications that affect other security factors.

IPsec and ISAKMP are highly complex systems. Unfortunately, we cannot give a sufficiently detailed description of these systems in this document to allow the reader to understand our comments without being familiar with IPsec and ISAKMP. Our comments frequently refer to specific places in the RFC documents for ease of reference.

The rest of this report is structured as follows. Chapter~\ref{chap:general} gives some general comments. Chapter~\ref{chap:bulk} discusses the IPsec protocols that handle bulk data. Chapter~\ref{chap:ISAKMP} discusses the ISAKMP generic definitions. Chapter~\ref{chap:IPsecDOI} talks about the IPsec Domain of Interpretation which gives more details on how the generic ISAKMP structure applies to the IPsec protocols. Finally, chapter~\ref{chap:IKE} discusses the IKE protocol that is the default key management protocol used with ISAKMP.

\chapter{General comments}\label{chap:general}

\section{Complexity}

Complexity is the biggest enemy of security. This might seem an odd statement in the light of the many fielded systems that exhibit critical security failures for very simple reasons. It is true nonetheless. The simple failures are simple to avoid, and often simple to fix. The problem is not that we do not know how to solve them; it is that this knowledge is often not applied. Complexity, however, is a different beast because we do not really know how to handle it.

Designing any software system is always a matter of weighing various requirements. These include functionality, efficiency, political acceptability, security, backward compatibility, deadlines, flexibility, ease of use, and many more. The unspoken requirement is often the complexity. If the system gets too complex, it becomes too difficult, and therefore too expensive, to make. As fulfilling more of the requirements usually involves a more complex design, many systems end up with a design that is as complex as the designers and implementors can reasonably handle. 

Virtually all software is developed using a try-and-fix methodology. Small pieces are implemented, tested, fixed, and tested again.\footnote{Usually several iterations are required.} Several of these small pieces are combined into a larger module, and this module is tested, fixed, and tested again. The end result is software that more or less functions as expected, although we are all familiar with the high frequency of functional failures of software systems.

This process of making fairly complex systems and implementing them with a try-and-fix methodology has a devastating effect on the security. The central reason is that you cannot test for security. Therefore, security bugs are not detected during the development process in the same way that functional bugs are. Suppose a reasonably sized program is developed without any testing at all during development and quality control. We feel confident in stating that the result will be a completely useless program; most likely it will not perform any of the desired functions correctly. Yet this is exactly what we get from the try-and-fix methodology when we look at security. 

The only reasonable way to ``test'' the security of a security product is to perform security reviews on it.\footnote{A cracking contest can be seen as a cheap way of getting other people to do a security analysis. The big problem is interpreting the results. If the prize is not claimed, it does not imply that any competent analysis was done and came up empty.} A security review is a manual process; it is relatively expensive in terms of time and effort and it will never be able to show that the product is in fact secure. [this seems to ignore the approaches usually employed for high assurance system design and implementation , i.e., careful design and review coupled with rigid development procedures, all prior to testing.]
The more complex the system is, the harder a security evaluation becomes. A more complex system will have more security-related errors in the specification, design, and implementation. We claim that the number of errors and difficulty of the evaluation are not linear functions of the complexity, but in fact grow much faster.

For the sake of simplicity, let us assume the system has $n$ different options, each with two possible choices.\footnote{We use $n$ as the measure of the complexity. This seems reasonable, as the length of the system specification and the implementation is proportional to $n$.} Then there are $n(n-1)/2 = O(n^2)$ different pairs of options that could interact in unexpected ways, and $2^n$ different configurations altogether. Each possible interaction can lead to a security weakness, and the number of possible complex interactions that involve several options is huge. As each interaction can produce a security weakness, we expect that the number of actual security weaknesses grows very rapidly with increasing complexity.

The same holds for the security evaluation. For a system with a moderate number of options, checking all the interactions becomes a huge amount of work. Checking every possible configuration is effectively impossible. Thus the difficulty of performing security evaluations also grows very rapidly with increasing complexity. The combination of additional (potential) weaknesses and a more difficult security analysis unavoidably results in insecure systems.

In actual systems, the situation is not quite so bad; there are often options that are ``orthogonal'' in that they have no relation or interaction with each other. This occurs, for example, if the options are on different layers in the communication system, and the layers are separated by a well-defined interface that does not ``show'' the options on either side. For this very reason, such a separation of a system into relatively independent modules with clearly defined interfaces is a hallmark of good design. Good modularization can dramatically reduce the ``effective'' complexity of a system without the need to eliminate important features. Options within a single module can of course still have interactions that need to be analyzed, so the number of options per module should be minimized. Modularization works well when used properly, but most actual systems still include cross-dependencies where options in different modules do affect each other.

A more complex system loses on all fronts. It contains more weaknesses to start with, it is much harder to analyze, and it is much harder to implement without introducing security-critical errors in the implementation.

Complexity not only makes it virtually impossible to create a secure implementation, it also makes the system extremely hard to manage. The people running the actual system typically do not have a thorough understanding of the security issues involved. Configuration options should therefore be kept to a minimum, and the options should provide a very simple model to the user. Complex combinations of options are very likely to be configured erroneously, which results in a loss of security. The stories in \cite{TheCodebreakers} and \cite{A:WhyFail} illustrate how management of complex systems is often the weakest link.

Both IPsec and ISAKMP are too complex to be secure. The design obviously tries to support many different situations with different options. We feel very strongly that the resulting system is well beyond the level of complexity that can be implemented securely with current methodologies.

\section{Stating what is achieved}

A security analysis evaluates the security aspects of a system. To be able to give any sensible answer, it should be clear what properties the system claims to have. That is, the system documentation should clearly state what security properties are achieved. This can be seen as the functional specification of the security properties. This applies not only to the entire system, but also to the individual modules. At each module or function, the security properties should be specified. 

A good comparison is the testing of a product. The testing verifies that the product performs according to the functional specifications. Without specifications, the testers might have some interesting comments, but they can never give a real answer. 

Without security specifications, the first task of the security analysis is to create descriptions of the security properties achieved, based on the perceived intentions of the system designer. The subsequent evaluation might then turn up problems of the form ``this function does not achieve the properties that we think it should have.'' The obvious answer will be: ``but that is not the properties that I designed it to have.'' Very quickly the discussion moves away from the actual security into what was meant. The overall result is a security evaluation that might point out some potential weaknesses, but that will hardly help in improving the security.

The IPsec and ISAKMP protocols do not specify clearly which security properties they claim to achieve. [RFCs 2401, 2402, and 2406 clearly state the security services offered by the AH and ESP protocols.] The same holds for the modules and functions. [modules are not specified by these standards; they are implementation artifacts.] We recommend that each function, module, and protocol be extended to include clear specifications regarding the security-related functionality they achieve. We feel that unless this is done, it will not be possible to perform an adequate security evaluation on a system of this complexity.

\chapter{Bulk data handling}\label{chap:bulk}

In this chapter we discuss the methods used to handle the encryption and authentication of the bulk data, as specified in \cite{RFC2401,RFC2402,RFC2403,RFC2404,RFC2405,RFC2406,RFC2451,RFC2410,RFC2411}. Together these documents specify the IPsec protocol. They specify the actual encryption and authentication of packets, assuming that symmetric keys have already been exchanged. We refer the reader to \cite{RFC2401} sections 1--4.2 for an overview of this part of IPsec and the relevant terminology.

\section{Functionality}

IPsec is capable of providing authentication and confidentiality services on a packet level. The security configuration of an IPsec implementation is done centrally, presumably by the system administrator. [In some environments, a single administrator might control the configuration of each IPsec implementation, or each user might have some control over it.  The latter would tend to be characterized as a distributed management paradigm, not a central one.  Also, two IPsec peers communicate ONLY if both agree on the security parameters for the SA, i.e., there is suitable overlap in the SPDs.  In that sense too, security configuration is distributed.]
IPsec is very suitable for creating a VPN over the Internet, improved security for dial-in connections to portables, restricting access to parts of a network, etc. These are very much network-level functions. IPsec by itself does not supply application-level security. Authentication links the packet to the security gateway of the originating network, the originating host, or possibly the originating user, but not to the application in question or the data the application was handling when it sent the packet. [true, but for many applications, application layer security is not needed, and its implementation might well be accorded less assurance than the network layer security provided by IPsec. This paragraph seems to suggest that there is some important benefit to linking data to an application, through an application-specific security mechanism.  There are good examples of where this is true, e.g., e-mail and directories. However, unless there are application-specific security semantics that cannot be captured by use of an application security protocol, your own arguments about simplicity, as well as a number of arguments re assurance, argue against proliferation of application security protocols.]
The IPsec functionality can significantly increase the security of the network. It is not a panacea for all security problems, and applications that require security services will typically have to use other security systems in addition to IPsec. [I might disagree with the term “typically” here. A lot depends on the application, where IPsec is implemented, etc.]
\section{Complexity}\label{sec:complexity}

Our biggest criticism is that IPsec is too complex. There are too many options that achieve the same or similar properties. [if they were completely equivalent this would be a good basis for simplifying IPsec. However, there are subtle differences that have resulted in the proliferation of options you address below.]
\subsection{Options}

IPsec suffers from an abundance of options. For example, two hosts that want to authenticate IP packets can use four different modes: transport/AH, tunnel/AH, transport/ESP with NULL encryption, and tunnel/ESP with NULL encryption. The differences between these options, both in functionality and performance, are minor. 

In particular, the following options seem to create a great deal of needless complexity:

\begin{enumerate}

\item There are two modes that can be used: transport mode and tunnel mode. In transport mode, the IP header of the packet is left untouched. AH authenticates both the IP header and the packet payload. ESP encrypts and authenticates the payload, but not the header. The lack of header authentication in transport/ESP is a real weakness, as it allows various manipulations to be performed. In tunnel mode, the full original IP packet (including headers) is used as the payload in a new IP packet with new headers. The same AH or ESP functions are used. As the original header is now included in the ESP authentication, the transport/ESP authentication weakness no longer exists.

Transport mode provides a subset of the functionality of tunnel mode. The only advantage that we can see to transport mode is that it uses a somewhat smaller bandwidth. However, the tunnel mode could be extended in a straightforward way with a specialized header-compression scheme that we will explain shortly. This would achieve virtually the same performance as transport mode without introducing an entirely new mode. We therefore recommend that the transport mode be eliminated. [transport mode and tunnel mode address fundamentally different requirements, from a networking point of view. When security gateways are involved, the use of tunnel mode is an absolute requirement, whereas it is a minor (and rarely used) feature for communications between end systems. A proposal to make all traffic tunnel mode, and to try to offset the added overhead through compression, seems to ignore the IPCOMP facility that is already available to IPsec implementations. Today, transport mode is used primarily to carry L2TP traffic, although this is primarily an efficiency issue.]
\item There are two protocols: AH and ESP. AH provides authentication, and ESP provides encryption, authentication, or both. In transport mode, AH provides a stronger authentication than ESP can provide, as it also authenticates the IP header. One of the standard modes of operation would seem to be to use both AH and ESP in transport mode. [although this mode is required to be supported, it seems to be rarely used today. A plausible, near-term use for AH is to provide integrity and authenticity for IPsec traffic between an end system and a first-hop intermediary. For example, AH can be used  between a host inside an enclave and a security gateway at the perimeter, to allow the SG to control what traffic leaves the enclave, without granting the SG access to plaintext traffic. This, and similar concatenated SA examples, motivate retention of AH. One could achieve a similar effect with (authentication-only) ESP tunnels, but with increased bandwidth and processing overhead.] In tunnel mode, the authentication that ESP provides is good enough (it includes the IP header), and AH is typically not combined with ESP \cite[section 4.5]{RFC2401}. [the example above shows why one might wish to use AH for the outer header, but most likely with ESP in transport mode.] (Implementations are not required to support nested tunnels that would allow ESP and AH to both be used.)

The AH protocol \cite{RFC2402} authenticates the IP headers of the lower layers. [AH authenticates the IP header at the SAME layer, in many respects. AH was originally described as an IP (v4) option. In IPv6, AH is viewed as  part of the AH header, and may appear before other header extensions (see section 4.1 of RFC 2401). I agree that AH represents ugly layering, but it’s not as bad as you suggest here.] This creates all kind of problems, as some header fields change in transit. As a result, the AH protocol needs to be aware of all data formats used at lower layers so that these mutable fields can be avoided. [this is an inaccurate characterization, especially given the status of AH re IPv6. Don’t think of AH as a transport protocol. It isn’t.] This is a very ugly construction, and one that will create more problems when future extensions to the IP protocol are made that create new fields that the AH protocol is not aware of. [RFC 2402 explains how to deal with new IP header fields in v6 (see section 3.3.3.1.2.2). The existence of a mutability flag in such extensions makes processing relatively straightforward.] Also, as some header fields are not authenticated, the receiving application still cannot rely on the entire packet. To fully understand the authentication provided by AH, an application needs to take into account the same complex IP header parsing rules that AH uses. The complex definition of the functionality that AH provides can easily lead to security-relevant errors.

The tunnel/ESP authentication avoids this problem, but uses more bandwidth. [but it does not provide exactly the same features, as noted above, so the alternative is not quite equivalent.] The extra bandwidth requirement can be reduced by a simple specialized compression scheme: for some suitably chosen set of IP header fields $X$, a single bit in the ESP header indicates whether the $X$ fields in the inner IP header are identical to the corresponding fields in the outer header.\footnote{A trivial generalization is to have several flag bits, each controlling a set of IP header fields.} The fields in question are then removed to reduce the payload size. This compression should be applied after computing the authentication but before any encryption. The authentication is thus still computed on the entire original packet. The receiver reconstitutes the original packet using the outer header fields, and verifies the authentication. A suitable choice of the set of header fields $X$ allows tunnel/ESP to achieve virtually the same low message expansion as transport/AH.

We conclude that eliminating transport mode allows the elimination of the AH protocol as well, without loss of functionality.  [counter examples provided above suggest that this claim is a bit overstated.]
\item The standard defines two categories of machines: hosts and security gateways. Hosts can use transport mode, but security gateways must always use tunnel mode. Eliminating transport mode would also allow this distinction to be eliminated. Various computers could of course still function as hosts or security gateways, but these different uses would no longer affect the protocol.

\item The ESP protocol allows the payload to be encrypted without being authenticated. In virtually all cases, encryption without authentication is not useful. The only situation in which it makes sense not to use authentication in the ESP protocol is when the authentication is provided by a subsequent application of the AH protocol (as is done in transport mode because ESP authentication in transport mode is not strong enough). [this is one example of when one might not need authentication with ESP, but it is not the only one. In general, if there is a higher layer integrity and/or authentication function in place, providing integrity/authentication in IPsec is redundant, both in terms of space and processing. The authentication field for ESP or AH is 12 bytes. For applications where packet sizes are quite small, and for some environments where packet size is of critical importance, e.g., packet voice in a wireless environment, ESP w/o authentication may be appropriate. This is especially true if the application protocol embodies an authentication mechanism. This might happen if the application protocol wants to offer uniform protection irrespective of the lower layers.  Admittedly, this might also cause the application to offer confidentiality as well, but depending on the application, the choices of what security services are being offered may vary.] Without the transport mode to worry about, ESP should always provide its own authentication. We recommend that ESP authentication always be used, and only encryption be made optional. [the question of authentication as an intrinsic part of ESP is independent of mode, i.e., whether one choose to provide authentication as a part of ESP is not determined by the choice of transport vs. tunnel mode.] 
\end{enumerate}

We can thus remove three of the four operational modes without any significant loss of functionality. [sorry, can’t agree, given the counter examples above.]
\subsection{Undesirable options}

There are existing combinations of options that are undesirable. These pose a problem when non-experts have to configure an IPsec installation. Given the fact that experts are rare and usually have better things to do, most IPsec installations will be configured by non-experts. [yes, we were aware of this concern. However, there is always a tradeoff between adopting the “we know what’s best for you” approach, vs. the “you can screw it up if you want to approach.” We opted for a point somewhere along this spectrum, but not at either end.]
\begin{enumerate}

\item In transport mode, use of ESP provides authentication of the payload only. The authentication excludes the IP headers of the packet. The result is a data stream that is advertised as ``authenticated'' for which critical pieces of information (such as the source and destination IP number) are not authenticated. Unless the system administrator is intimately familiar with the different forms of authentication used by IPsec, it is quite likely that the administrator will assume that the authentication protects the entire packet. The combination of transport mode and the ESP protocol (without the AH protocol) should therefore not be allowed. [The IP source and destination address are covered by the TCP checksum, which is covered by the ESP integrity check, so this does limit (a tiny bit) the ability to change these values without detection. A more significant observation is that transport mode IPsec SAs will probably always use source and/or destination IP addresses as part of the selector set. In such cases, tampering with the either address will result in a failed authentication check.]
\item The standard allows ESP to be used with the NULL encryption, such that it provides only authentication. The authentication provided by ESP in transport mode is less functional than the authentication provided by AH, at a similar cost. If transport mode is retained, either the ESP authentication should be extended or the use of ESP with only authentication should be forbidden and replaced by the use of AH. [ESP authentication is more efficient to compute than AH, because of the selective IP header coverage provided by AH.  Thus there is good reason to allow authentication-only ESP as an alternative to AH. This point was debated by the group and, with implementation experience, vendors came to agree that this is true.]
\item The ESP protocol can provide encryption without authentication. This does not make much sense in an application. It protects the application against passive eavesdroppers, but provides no protection against active attacks that are often far more devastating. Again, this mode can lure non-expert users into using an unsafe configuration that they think is secure. Encryption without authentication should be forbidden. [as noted above, there are examples where this feature set for ESP is attractive.]
\end{enumerate}

\subsection{Orthogonality}

IPsec also suffers from a lack of orthogonality. The AH and ESP protocols can be used together, but should only be used in one particular order. In transport mode, ESP by itself provides only partial authentication of the IP packet, and using AH too is advisable. [not in most cases, as noted above.] In tunnel mode the ESP protocol authenticates the inner headers, so use of AH is no longer required. These interdependencies between the choices demonstrate that these options are not independent of each other. [true, but who says that this is a critical criteria? TCP and IP are not orthogonal either, e.g., note the TCP checksum covering parts of the IP header.]
\subsection{Compatibility}

The IPsec protocols are also hampered by the compatibility requirements. A simple problem is the TOS field in the IP header \cite[p.\ 10]{RFC2402}. Although this is supposed to be unchanged during the transmission of a packet (according to the IP specifications), some routers are known to change this field. IPsec chose to exclude the TOS field from the authentication provided by the AH protocol to avoid errors introduced by such rogue routers. The result is that, in transport/AH packets that have an authenticated header, the TOS field is not authenticated. This is clearly unexpected from the application point of view, which might want to rely on the correct value of the TOS field. This problem does not occur in tunnel mode. [it is unfortunate that cisco chose to not follow the specs here, and in several other places. I agree that an unenlightened system administrator might be surprised in this case. But, in practice, the effect is minimal.  Your example cites transport mode, which means that the TOS bits are being acted upon by the end system. If end systems really paid attention to these bits in the first place, cisco would not have been able to corrupt them with impunity! The reason that these bits are being re-used by the ECN folks is because hosts have never made use of them.  Still, going forward, one should pay attention to this vulnerability.]
A more complex compatibility problem is the interaction between fragmentation and IPsec \cite[appendix B]{RFC2401}. This is a complex area, but a typical IPsec implementation has to perform specialized processing to facilitate the proper behavior of higher-level protocols in relation to fragmentation. Strictly speaking, fragmentation is part of the communication layer below the IPsec layer, and in an ideal world it would be transparent to IPsec. Compatibility requirements with existing protocols (such as TCP) force IPsec to explicitly handle fragmentation issues, which adds significantly to the overall complexity. Unfortunately, there does not seem to be an elegant solution to this problem. [The requirement here is the same that arises whenever an intermediate system adds info to a packet, or when a smaller MTU intermediate system is traversed. IPsec in an SG is doing what a router along a path would do if the “other side” network were smaller. IPsec in a host is doing what the NIC would do if the LAN MTU changed. The real complexity arises when we wish to do this optimally, at a security gateway or a BITS or BITW implementation, in cases where different SAs use different combinations of AH and ESP, or different algorithms, etc.]
\subsection{Conclusion}

The overall result is that IPsec bulk data handing is overly complex. In our opinion it is possible to define an equivalent system that is far less complex. 

\section{Order of operations}

\subsection{Introduction}

When both encryption and authentication are provided, IPsec performs the encryption first, and authenticates the ciphertext. In our opinion, this is the wrong order. Going by the ``Horton principle'' \cite{WS:SSL30}, the protocol should authenticate what was meant, not what was said. The ``meaning'' of the ciphertext still depends on the decryption key used. Authentication should thus be applied to the plaintext (as it is in SSL \cite{SSLv3Nov96}), and not to the ciphertext.[The order of processing is intentional. It is explicitly designed to allow a receiver to discard a packet as quickly as possible, in the event of DoS attacks, as you acknowledge below. The suggestion that this concern be addressed by the addition of a secondary MAC seems to violate the spirit of simplicity that this document espouses so strongly, and the specific proposed fix is not strong enough to warrant its incorporation. Moreover, this ordering allows parallel processing at a receiver, as a means of increasing throughput and reducing delay.] 
This does not always lead to a direct security problem. In the case of the ESP protocol, the encryption key and authentication key are part of a single ESP key in the SA. A successful authentication shows that the packet was sent by someone who knew the authentication key. The recipient trusts the sender to encrypt that packet with the other half of the ESP key, so that the decrypted data is in fact the same as the original data that was sent. The exact argument why this is secure gets to be very complicated, and requires special assumptions about the key agreement protocol. For example, suppose an attacker can manipulate the key agreement protocol used to set up the SA in such a way that the two parties get an agreement on the authentication key but a disagreement on the encryption key. When this is done, the data transmitted will be authenticated successfully, but decryption takes place with a different key than encryption, and all the plaintext data is still garbled. [The fundamental assumption is that an ESP SA that employs both encryption and an HMAC will have the keys bound together, irrespective of the means by which they are generated. This assumption probably could be better stated in the RFCs.]
In other situations, the wrong order does lead to direct security weaknesses.

\subsection{An attack on IPsec}

Suppose two hosts have a manually keyed transport-mode AH-protocol SA, which we will call SAah. Due to the manual keying, the AH protocol does not provide any replay protection. These two hosts now negotiate a transport-mode encryption-only ESP SA (which we will call SAesp1) and use this to send information using both SAesp1 and SAah. The application can expect to get confidentiality and authentication on this channel, but no replay protection. When the immediate interaction is finished, SAesp1 is deleted. A few hours later, the two hosts again negotiate a transport-mode encryption-only ESP SA (SAesp2), and the receiver chooses the same SPI value for SAesp2 as was used for SAesp1. Again, data is transmitted using both SAesp2 and SAah. The attacker now introduces one of the packets from the first exchange. This packet was encrypted using SAesp1 and authenticated using SAah. The receiver checks the authentication and finds it valid. (As replay protection is not enabled, the sequence number field is ignored.) The receiver then proceeds to decrypt the packet using SAesp2, which presumably has a different decryption key then SAesp1. The end result is that the receiver accepts the packet as valid, decrypts it with the wrong key, and presents the garbled data to the application. Clearly, the authentication property has been violated. [this attack is not a criticism of the choice of ESP operation ordering, but rather the notion of applying AH and ESP (encryption only) in a particular order, as allowed by RFC 2401. The specific combination of keying operations described here, though not prohibited by 2401, does not seem likely to occur in practice. Specifically, if an IPsec implementation supports automated key management, as described above for the ESP SAs, then it is highly unlikely that the AH SA would be manually keyed. The push to retain manual keying as a base facility for IPsec is waning, and most implementations have IKE available.  Under these circumstances, this vulnerability is unlikely to be realized.] 
\subsection{Other considerations}

Doing the encryption first and authentication later allows the recipient to discard packets with erroneous authentication faster, without the overhead of the decryption. This helps the computer cope with denial-of-service attacks in which a large number of fake packets eat up a lot of CPU time. We question whether this would be the preferred mode of attack against a TCP/IP-enabled computer. If this property is really important, a 1- or 2-byte MAC (Message Authentication Code) on the ciphertext could be added. The MAC code allows the recipient to rapidly discard virtually all bogus packets at the cost of an additional MAC computation per packet. [a one or two byte MAC provides so little protection that this does not seem to be an attractive counter-proposal. Also, as noted above, it adds complexity …]
\subsection{Conclusion}

The ordering of encryption and authentication in IPsec is wrong. Authentication should be applied to the plaintext of the payload, and encryption should be applied after that.

\section{Security Associations}

A Security Association (SA) is a simplex ``connection' that affords security services to the traffic carried by it \cite[section 4]{RFC2401}. The two computers on either side of the SA store the mode, protocol, algorithms, and keys used in the SA. Each SA is used only in one direction; for bidirectional communications two SAs are required. Each SA implements a single mode and protocol; if two protocols (such as AH and ESP) are to be applied to a single packet, two SAs are required.

Most of our aforementioned comments also affect the SA system; the use of two modes and two protocols make the SA system more complex than necessary.

There are very few (if any) situations in which a computer sends an IP packet to a host, but no reply is ever sent. [we have a growing number of apps where this functionality may be appropriate. For example, broadcast packet video feeds and secure time feeds are unidirectional.] There are also very few situations in which the traffic in one direction needs to be secured, but the traffic in the other direction does not need to be secured. It therefore seems that in virtually all practical situations, SAs occur in pairs to allow bidirectional secured communications. In fact, the IKE protocol negotiates SAs in pairs. [IKE has not always been well coordinated with IPsec, unfortunately. This is why we have to have null encryption and null authentication algorithms. So, I don’t think one should cite IKE behavior as a basis for making SAs bi-directional. I agree that the vast majority of examples that we see now are full duplex, but we have example where this may not apply, as noted above.]
This would suggest that it is more logical to make an SA a bidirectional ``connection'' between two machines. This would halve the number of SAs in the overall system. It would also avoid asymmetric security configurations, which we think are undesirable (see section~\ref{sec:SPD}). [The SPI that is used as a primary de-multiplexing value, must be chosen locally, by the receiver, so having bi-directional SAs probably won’t change the size of the SAD substantially. Specifically, how do you envision that a switch to bi-directionality would simplify implementations?]
\section{Security policies}\label{sec:SPD}

The security policies are stored in the SPD (Security Policy Database). For every packet that is to be sent out, the SPD is checked to find how the packet is to be processed. The SPD can specify three actions: discard the packet, let the packet bypass IPsec processing, or apply IPsec processing. In the last case, the SPD also specifies which SAs should be used (if suitable SAs have already been set up) or specifies with what parameters new SAs should be set up to be used.

The SPD seems to be a very flexible control mechanism that allows a very fine-grained control over the security processing of each packet. Packets are classified according to a large number of selectors, and the SPD can match some or all selectors to determine the appropriate action. Depending on the SPD, this can result in either all traffic between two computers being carried on a single SA, or a separate SA being used for each application, or even each TCP connection. Such a very fine granularity has disadvantages. There is a significantly increased overhead in setting up the required SAs, and more traffic analysis information is made available to the attacker. At the same time we do not see any need for such a fine-grained control. [a lot of customers for IPsec products disagree!] The SPD should specify whether a packet should be discarded, should bypass any IPsec processing, requires authentication, or requires authentication and encryption. Whether several packets are combined on the same SA is not important. [yes it is. By allowing an administrator the ability to select the granularity of protection, one can control the level of partial traffic flow confidentiality offered between security gateways. Also, fine-grained access control allows an admin to allow some forms of connections through the gateway, while rejecting others. Access control is often the primary, underlying motivation for using IPsec. A number of attacks become possible if one cannot tightly bind the authentication provided by IPsec to the access control decision. Also, given the computational costs of SA establishment via IKE, it is important to allow an administrator to select the granularity of SAs.] The same holds for the exact choice of cryptographic algorithm: any good algorithm will do. There are two reasons for this. First of all, nobody ever attacks a system by cryptanalysis. Instead, attacks are made on the users, implementation, management, etc. Any reasonable cryptographic algorithm will provide adequate protection. The second reason is that there are very efficient and secure algorithms available. Two machines should negotiate the strongest algorithm that they are allowed. There is no reason to select individual algorithms on an application-by-application basis. [if one were to employ ESP without authentication, because a specific higher layer protocol provided its own authentication, and maybe because the application employed FEC, then one might well imagine using different encryption algorithms, or different modes (e.g., block vs. stream) for different SAs. while I agree that the focus on algorithm agility may be overstated, it does allow communicating parties to select a higher quality algorithm, relative to the mandated default, if they both support that algorithm.] 
In our opinion, management of the IPsec protocols can be simplified by letting the SPD contain policies formulated at such a higher level. As we argued in section~\ref{sec:complexity}, simplification will strengthen the actual system. [examples provided above illustrate why fine-grained access control is important.]
It would be nice if the same high-level approach could be done in relation to the choice of SA end-points. As there currently does not seem to be a reliable automatic method of detecting IPsec-enabled security gateways, we do not see a practical alternative to manual configuration of these parameters. It is questionable whether automatic detection of IPsec-enabled gateways is possible at all. Without some initial knowledge of the other side, any detection and negotiation algorithm can be subverted by an active attacker. [the authors identify a good problem, but it is hardly an unsolvable one. A proposal was put forth (by Bob Moscowtiz, over a year ago) to include records in the DNS analogous to MX records. When one tried to establish an SA to a host “behind” an SG, fetching this record would direct the initiator to an appropriate SG.  This solves the SG discovery problem. Other approaches have been put forth in the more recent BBN work on security policy management, which forms the basis for a new IETF WG, chaired by Luis Sanchez. The fact that none of the approaches has been deployed says more about the priorities of IPsec vendors and early adopters than about the intractability of the problem. The other part of the problem is verifying that an SG is authorized to represent the SA target. Here too, various approaches have been described on the IPsec mailing list.]
\section{General comments}

This section contains general comments that came up during our evaluation of IPsec. 

\begin{enumerate}

\item In \cite[p.\ 22]{RFC2401}, several fields in the SAD are required for all implementations, but only used in some of them. It does not make sense to require the presence of fields within an implementation. Only the external behavior of the system should be standardized. [the SAD defined in 2401 is nominal, as the text explains. An implementation is not required to implement these fields, but must exhibit behavior consistent with the presence of these fields. We were unable to specify external behavior without reference to a construct of this sort. The SPD has the same property.]
\item According to \cite[p.\ 23]{RFC2401}, an SA can be either for transport mode, tunnel mode, or ``wildcard,'' in which case the sending application can choose the mode on a packet-by-packet basis. Much of the rest of the text does not seem to take this possibility into account. It also appears to us to be needless complexity that will hardly every be used, and is never a necessity. We have already argued that transport mode should be eliminated, which implies that this option is removed too. If transport mode is to be retained, we would certainly get rid of this option. [I agree, but at least one knowledgeable WG member was quite adamant about this. So, chalk it up to the committee process!]
\item IPsec does not allow replay protection on an SA that was established using manual key management techniques. This is a strange requirement. We realize that the replay protection limits the number of packets that can be transmitted with the SA to $2^{32}-1$. Still, there are applications that have a low data rate where replay protection is important and manual keying is the easiest solution. [elsewhere this critique argues for not presenting options in a standard that can be misconfigured. Yet here, the authors make an argument for just such an option! The WG decided that there was too great a chance that a manually keyed SA would fail to maintain counter state across key lifetime and thus made a value judgement to ban anti-replay in this context.]
\item \cite[section 5.2.1, point 3]{RFC2401} suggests that an implementation can find the matching SPD entry for a packet using back-pointers from the SAD entries. In general this will not work correctly. Suppose the SPD contains two rules: the first one outlaws all packets to port $X$, and the second one allows all incoming packets that have been authenticated. An SA is set up for this second rule. The sender now sends a packet on this SA addressed to port $X$. This packet should be refused as it matches the first SPD rule. However, the backpointer from the SA points to the second rule in the SPD, which allows the packet. This shows that back-pointers from the SA do not always point to the appropriate rule, and that this is not a proper method of finding the relevant SPD entry. [this is point #3 and is applied only after points #1 and #2. Since point #1 calls for a liner search of the SPD, the packet would be rejected, as required. Thus point #3 is not in error.]
\item The handling of ICMP messages as described in \cite[section 6]{RFC2401} is unclear to us. It states that an ICMP message generated by a router must not be forwarded over a transport-mode SA, but transport mode SAs can only occur in hosts. By definition, hosts do not forward packets, and a router never has access to a transport-mode SA. [the text in the beginning of section 6 is emphasizing that an SA from a router to a host or security gateway, must be a tunnel mode SA, vs. a transport mode SA. If we didn’t make this clear, someone might choose to establish a transport mode SA from an intermediate system, and this would cause the source address checks to fail under certain circumstances, as noted by the text.] 
The text further suggests that unauthenticated ICMP messages should be disregarded. This creates problems. Let us envision two machines that are geographically far apart and have a tunnel-mode SA set up. There are probably a dozen routers between these two machines that forward the packets. None of these routers knows about the existence of the SA. Any ICMP messages relating to the packets that are sent will be unauthenticated and unencrypted. Simply discarding these ICMP messages results in a loss of IP functionality. This problem is mentioned, but the text claims this is due to the routers not implementing IPsec. Even if the routers implement IPsec, they still cannot send authenticated ICMP messages about the tunnel unless they themselves set up an SA with the tunnel end-point for the purpose of sending the ICMP packet. The tunnel end-point in turn wants to be sure the source is a real router. This requires a generic public-key infrastructure, which does not exist. [RFC 2401 clearly states the dangers associated with blindly accepting unauthenticated ICMP messages, and the functionality problems associated with discarding such messages. System administrators are provided with the ability to make this tradeoff locally. The first step to addressing this problem is the addition of IPsec into routers, as stated in the RFC. Only then does one face the need to have a PKI that identifies routers. Yes, this second PKI does not exist, but a subset of it (at BGP routers) might be established if the S-BGP technology is deployed. These are the routers most likely to issue ICMP PMTU messages. So, the answer here is that the specifications allow site administrators to make security/functionality tradeoffs, locally. The longer term solution described would require routers to implement IPsec, so that they can send authenticated ICMP messages. Yes, this would require a PKI, but such a PKI may arise for other reasons.]
As far as we understand this problem, this is a fundamental compatibility problem with the existing IP protocol that does not have a good solution. 

\item \cite[section 6.1.2.1]{RFC2401} lists a number of possible ways of handling ICMP PMTU messages. An option that is not mentioned is to keep a limited history of packets that were sent, and to match the header inside the PMTU packet to the history list. This can identify the host where the packet that was too large originated. [the approach suggested by the authors was rejected as imposing too much of a burden on an SG. section 6.1.2.1 offers options (not suggestions) for an SG to respond to ICMP PMTU messages, including heuristics to employ when not enough information is present in the returned header. These options may not as responsive as a strategy that caches traffic on each SA, but they are modest in the overhead imposed. Also, an SA that carries a wide range of traffic (not fine-grained) might not benefit from a limited traffic history, as the traffic that caused the ICMP might well be from a host whose traffic has been flushed from the “limited history.”]
\item \cite[section 7]{RFC2401} mentions that each auditable event in the AH and ESP specifications lists a minimum set of information that should be included in the audit-log entry. Not all auditable events defined in \cite{RFC2406} include that information.[you’re right. Exactly one auditable event in 2406 does not specify the list of data that SHOULD be audited.  We’ll fix that in the next pass. Furthermore, auditable events in \cite{RFC2401} do not specify such a minimum list of information. [there are exactly 3 events defined as auditable in 2401, one of which overlaps with 2406. So, to be more precise, the other 2 auditable events defined in 2401 ought to have the minimum data requirements defined.  Another good point that we will fix in the next pass.] The documentation should be reviewed to ensure that a minimum list of audit-log information is specified with each auditable event.
\item Various algorithm specifications require the implementation to reject known weak keys. For example, the DES-CBC encryption algorithm specifications \cite{RFC2405} requires that DES weak keys are rejected. It is questionable whether this actually increases security. It might very well be that the extra code that this requires creates more security problems due to bugs than are solved by rejecting weak keys.

Weak keys are not really a problem in most situations. For DES, it is far less work for an attacker to do an exhaustive search over all possible keys than to wait for an SA that happens to use a weak key. After all, the easiest way for the attacker to detect the weak keys is to try them all. Weak-key rejection is only required for algorithms where detecting the weak key class by the weak cipher properties is significantly less work than trying all the weak keys in question.

We recommend that the weak-key elimination requirement be removed. Encryption algorithms that have large classes of weak keys that introduce security weaknesses should simply not be used. [I tend to agree with this analysis. The argument for weak key checking was made by folks who don’t understand the cryptographic issues involved, but who are persistent and loud, e.g., Bill Simpson. Ted T'so (co-chair of the WG) and I discussed this problem, and tried to explain it to the list, but were unsuccessful. Another flaw in the committee process.]
\item The only mandatory encryption algorithm in ESP is DES-CBC. Due to the very limited key length of DES, this cannot be considered to be very secure. We strongly urge that this algorithm not be standardized but be replaced by a stronger alternative. The most obvious candidate is triple-DES. Blowfish could be used as an interim high-speed solution.\footnote{On a Pentium CPU, Blowfish is about six to seven times faster than triple-DES.} The upcoming AES standard will presumably gain quick acceptance and probably become the default encryption method for most systems. [DES as a default was mandated because of pressure from vendors who, at the time, could not get export permission for 3DES. Triple DES or AES will certainly augment DES as additional, mandatory defaults, and may replace it in the future. ]
\item The insistence on randomly selected IV values in \cite{RFC2405} seems to be overkill. It is true that a counter would provide known low Hamming-weight input differentials to the block cipher. All reasonable block ciphers are secure enough against this type of attack. Use of a random generator results in an increased risk of an implementation error that will lead to low-entropy or constant IV values; such an error would typically not be found during testing. [In practice the IV is usually acquired from previous ciphertext output, as suggested in the text for CBC mode ciphers, which is easy to acquire and not likely to result in significant complexity. In hardware assisted environment an RNG is usually available anyway. In a high assurance hardware implementation, the crypto chip would generate the IV.]
\item Use of a block cipher with a 64-bit block size should in general be limited to at most $2^{32}$ block encryptions per key. This is due to the birthday paradox. After $2^{32}$ blocks we can expect one collision.\footnote{To get a $10^{-6}$ probability of a collision it should be limited to about $2^{22}$ blocks.} In CBC mode, two equal ciphertexts give the attacker the XOR of two blocks of the plaintext. The specifications for the DES-CBC encryption algorithm \cite{RFC2405} should mention this, and require that any SA using such an algorithm limit the total amount of data encrypted by a single key to a suitable value. 
\item The preferred mode for using a block cipher in ESP seems to be CBC mode \cite{RFC2451}. This is probably the most widely used cipher mode, but it has some disadvantages. As mentioned earlier, a collision gives direct information about the relation of two plaintext blocks. Furthermore, in hardware implementations each of the encryptions has to be done in turn. This gives a limited parallelism, which hinders high-speed hardware implementations. [first, this is not an intrinsic part of the architecture; one can define different modes for use with existing or different algorithms if the WG is so motivated. Second, current hardware is available at speeds higher than the associated packet processing capability of current IPsec devices, so this does not appear to be a problem for the near term. Transition to AES will decrease the processing burden (relative to 3DES), which may render this concern less serious.]
Although not used very often, the counter mode seems to be preferable. The ciphertext of block $i$ is formed as $C_i = P_i \oplus E_K( i )$, where $i$ is the block number that needs to be sent at the start of the packet.\footnote{If replay protection is always in use, then the starting $i$-value could be formed as $2^{32}$ times the sequence number. This saves eight bytes per packet.} After more than $2^{32}$ blocks counter mode also reveals some information about the plaintext, but this is less than what occurs in CBC. The big advantage of counter mode is that hardware implementations can parallelize the encryption and decryption process, thus achieving a much higher throughput. [earlier the authors criticize IPsec for a lack of orthogonality, but introducing interdependence between the anti-replay counter and encryption would certainly violate the spirit of the earlier criticism! Counter mode versions of algorithms can be added to the list easily if there is sufficient vendor support.]
\item \cite[section 2.3]{RFC2451} states that Blowfish has weak keys, but that the likelihood of generating one is very small. We disagree with these statements. The likelihood of getting two equal 32-bit values in any one 256-entry S-box is about ${256 \choose 2} \cdot 2^{-32} \approx 2^{-17}$. This is an event that will certainly occur in practice. However, the Blowfish weak keys only lead to detectable weaknesses in reduced-round versions of the cipher. There are no known weak keys for the full Blowfish cipher. 

\item In \cite[section 2.5]{RFC2451}, it is suggested to negotiate the number of rounds of a cipher. We consider this to be a very bad idea. The number of rounds is integral to the cipher specifications and should not be changed at will. Even for ciphers that are specified with a variable number of rounds, the determination of the number of rounds should not be left up to the individual system administrators. The IPsec standard should specify the number of rounds for those ciphers. [I agree that this algorithm spec ought not encourage negotiation of the number of rounds, without specifying a minimum for each cipher, although this gets us into the crypto strength value judgement arena again. Also, the inclusion of 3DES in this table is inappropriate as it is a 48 round algorithm, period.  So, yes, there is definite room for improvement in this RFC.]
\item \cite[section 2.5]{RFC2451} proposes the use of RC5. We urge caution in the use of this cipher. It uses some new ideas that have not been fully analyzed or understood by the cryptographic community. The original RC5 as proposed (with 12 rounds) was broken, and in response to that the recommended number of rounds was increased to 16. We feel that further research into the use of data-dependent rotations is required before RC5 is used in fielded systems. [RC5 is not required by IPsec implementations. In the IETF spirit of flexible parameterization of implementations, vendors are free to offer any additional algorithms in addition to the required default. In general, the IETF is not prepared to make value judgements about these algorithms and so one may see RFCs that specify a variety of additional algorithms.]
\item \cite[section 2.4]{RFC2406} specifies that the ESP padding should pad the plaintext to a length so that the overall ciphertext length is both a multiple of the block size and a multiple of 4. If a block cipher of unusual block size is used (e.g., 15 bytes), then this can require up to 59 bytes of padding. This padding rule works best for block sizes that are a multiple of 4, which fortunately is the case for most block ciphers. [this padding rule is based primarily on IP packet alignment considerations, not on common block cipher sizes! This is stated in the text.]
\item \cite[p.\ 6, point a]{RFC2406} states that the padding computations of the ESP payload with regard to the block size of the cipher apply to the payload data, excluding the IV (if present), Pad Length, and Next Header fields. This would imply that the Pad Length and Next Header fields are not being encrypted. Yet the rest of the specification is clear that the Pad Length and Next Header field are to be encrypted, which is what should happen. The text of point a should be made consistent with the rest of the text. [The text says “…the padding computation applies to the Payload Data exclusive of the IV, the Pad Length, and Next Header fields.” The comma after “IV” is meat to terminate the scope of the word “exclusive,” and thus the intent is to include the pad length and next header fields. The term “payload” in ESP applies to a set of data not including the latter two fields, so the sentence is, technically, unambiguous, and it is consistent with the terms employed in the figure in section 2.  But, I admit the wording could be improved.]
\item There is a document that defines the NULL encryption algorithm used in ESP \cite{RFC2410}, but no document that defines the NULL authentication algorithm, which is also used by ESP \cite[section 5]{RFC2406}. [good point. Another RFC publication opportunity!]
\item The NULL cipher specifies an IV length of zero \cite{RFC2410}. This would seem to imply that the NULL cipher is used in CBC mode, which is clearly not the case. The NULL cipher is in fact used in ECB mode, which does not require an IV. Therefore, no IV length should be specified. [use of the NULL cipher in ECB mode would be inconsistent with the guidance in FIPS 82, and thus CBC mode is intended, to preserve the confidentiality characteristics inherent in this cipher :-).]
\end{enumerate}

\section{Conclusions}

The IPsec system should be simplified significantly. This can be done without loss of functionality or performance. There are also some security weaknesses that should be fixed. [the extensive comments above illustrate that the proposed changes to IPsec would change the functionality, contrary to the claim made here. One might argue about the importance of some of this functionality, but several examples have been provided to illustrate application contexts that the authors of this report did not consider in their analysis. Several misunderstandings of some RFCs also were noted.] 
Due to its high complexity, we have not been able to analyze IPsec as thoroughly as we would have liked. After simplification, a new security analysis should be performed.

I have not reviewed the ISAKMP/IKE comments. However, I agree that this protocol is very complex. Much of the complexity results of incremental enhancement and a reluctance on the part of developers to discard older versions of code.
