
Harrier Attack, by Durell Software Ltd,
published by Amsoft, is an iconic game that
is instantly recognizable as it came bundled
with the machine. I remember spending
many hours playing it with my dad when we
got our first Amstrad, a CPC 464, back in
1987. I flew the plane and my dad pressed
the space bar to bomb the targets. Many
people have fond memories of growing up,
playing this game.

Some are under the impression that Harrier
Attack was written in the BASIC
programming language. They may think this due to its slow speed, blocky movements and 8x8
character-sized sprites. But it is written in machine code. Its slow speed is due to the entire screen being
scrolled one byte at a time. There are also program loops inserted by the programmer to deliberately
slow the game down, presumably to make it easier for children to 'win' on the earlier levels.

As Harrier Attack is a fairly simple game, I wanted to see if I could disassemble it, to try to speed it up.
I opened the BASIC loader in WinAPE to see where the main program was located. Once I had found
this, I highlighted the code in WinAPE's disassembler and disassembled it.

The first task was to identity which parts of the code were functions. I did this by creating a division
between any commands ending in RETurn. This helped to make the code easier to read. The next job is
to see which firmware functions were being used by the program by looking up their addresses and
replacing them with proper names. Once the code was divided into functions, anything left over can be
regarded as data, and it is just a case of working out whether they are variables, sounds or sprites.

I found the function that printed 8x8 tiles on the screen and used it to print every tile that is available in
the game. Using this debug test, I was able to identify all of the tiles in the table. I also found the
function that printed blocks of 8x8 tiles, and was able to idenify the corresponding table that contained
all the sprite defintions for clouds, tanks, lorries, buildings, etc. I identified the main program loop
which takes you through all the stages of the level.

Once I had the code cleaned up, and it was recompiling and running in WinAPE without using the
loader, I was able to start tinkering with it.

I identified the function that scrolled the screen and tried modifying it to see if I could improve it.
Using some Z80 assembly language tutorials on CRTC scrolling, I found I was able to replace the byte
by byte copy function with single CRTC scroll command. It worked! And it was fast! Although I found
the screen gradually ascended vertically too, so I needed to modify the vertical positioning of the
graphics to compensate. The flight instruments also scrolled with the screen, which was a big problem.
But looking at some Amstrad Plus screen splitting examples, I found I was able to keep this portion of
the screen stationary while still using the CRTC to scroll the main gaming area.

I found some examples of how to create
hardware sprites on the Plus machines. Each
sprite has its own palette of 16 colours, and
can be displayed in any resolution. I
designed a simple plane graphic in GIMP,
not an easy task when you are working with
a sprite 16x8 pixels in size, and then typed
the values into WinAPE's assembler. It was
fairly simple to display the Plus hardware
sprite in place of the Amsoft one, although I needed to make the plane sprite in two halfs, as sometimes
part of the plane sprite disappears behind a cloud while the other part remains visible.

The new method of scrolling also created some problems. When the screen was scrolled byte by byte,
planes would naturally move towards the left side of the screen without their coordinates being
updated. It looks as if they are moving, but they are actually not. The hardware sprites stay in the same
place until I tell them to move. So the code had to be modified to cater for this.

Getting the game to compile on cartidge was
not too time consuming as I had already
created my Mimo's Quest game on
cartridge. So I borrowed the BASH script
from it, created a new loading screen and
palette, and eventually I had the game
running from cartridge. The loading screen
was created using a public domain image of
a Harrier Jumpjet landing on an aircraft
carrier - “U.S. Marine Corps Maj. M. J.
Shulte lands an AV-8B Harrier aircraft on
the flight deck of the amphibious assault
ship USS Peleliu (LHA 5) May 15, 2008,
while under way in the Pacific Ocean.” I converted the image in ConvImgCPC. It worked well with the
Plus palette as most of the plane is greyscale and the background is all the one colour. The close up
shot also shows plenty of detail on the aircraft. I used the original logos for the game title and
publisher.

Below is my BASH script for creating the cartridge...

cd /home/chris/Desktop/MimoSource/HarrierAttack/
../makecartridge/rasm.exe -amper HarrierAttackSourceNew2_alt_CRTC_CART6.asm
../makecartridge/rasm.exe -amper AMSTRADFONT3.asm AMSFONT
../makecartridge/rasm.exe -amper HARR_SCR2.asm HARR_SCR

split -b 16k rasmoutput.bin game_harrier_ # SPLIT INTO 16K CHUNKS - THIS GETS COPIED TO RAM WHEN CART
LOADS
cd ../makecartridgeharrier

rm ./boot.bin
rm ./mycart.bin

./rasm.exe -amper boot2.asm boot

./rominject -p 0 -o 0 boot.bin ./mycart.bin

./rominject -p 1 -o 0 /home/chris/Desktop/MimoSource/HarrierAttack/HARR_SCR.bin ./mycart.bin

./rominject -p 2 -o 0 /home/chris/Desktop/MimoSource/HarrierAttack/game_harrier_aa ./mycart.bin #0000-
3FFF CODE
./rominject -p 3 -o 0 /home/chris/Desktop/MimoSource/HarrierAttack/AMSFONT.bin ./mycart.bin #0100-3F00
CODE

rm ./HarrierAttackPlus.cpr
rm /media/chris/SAMSUNG/Data/Emulator/WinAPE2021/ROM/HarrierAttackPlus.cpr
./buildcpr ./mycart.bin ./HarrierAttackPlus.cpr
cp ./HarrierAttackPlus.cpr /media/chris/SAMSUNG/Data/Emulator/WinAPE2021/ROM/HarrierAttackPlus.cpr

I had to rearrange the screen and code locations in memory. The instrument panel is located at &4000.
The game screen is located at &8000. The main game code is located at &C000. And the extra
functions and tables I created are located at &0000. As the ASIC is paged in at &4000, I moved the
screen so the ASIC would not obscure my game code. As the split screen area of memory is the one
that will be least used, I can safely have the ASIC paged in all the time until I need to update the flight
instruments.

I thought it would be a good idea to improve the menu. The original Harrier Attack menu was really
slow at redrawing. I don't know why the programmer used this method, but basically they used a
firmware text command to 'clear' the entire screen. I replaced this function with a faster assembly one.
As I am unable to use firmware for the Plus cartridge version of the game, I also had to replace the text
function with my own one. I created a short assembly program to print the entire ASCII character set
on screen, and then another function to rip those bytes from the screen and save it in a linear format in
memory. This enabled me to quickly produce a table of sprites for my text printing function.

I also wanted to change the font so it didn't
look like the game was created in BASIC.
When I was a child, I remember being
fascinated by a program I typed in from
Amstrad Action that was able to turn plain
text into multicoloured writing. I have no idea
how it worked, as it was all machine code.
But it looked amazing. I have an idea how it
works now. I adapted my text writing
function so that as the sprite data is copied to
the screen line by line, the bits are changed
depending on which line it is working on. It
was a little complicated, but eventually I
worked out which bits needed inverted or swapped until I was able to create multicoloured text. I also
decided to use the font I created in BASIC when I was a child.

The Plus machines' colour palette is pretty
impressive. I remember being amazed as a
child, reading reviews of Burnin' Rubber
and how the sky slowly changed from
daylight, to dusk, to night time. It really
added to the atmosphere of the game. So I
decided to try and do the same for Harrier
Attack. Using a couple of tables of integers,
and a function to work out which integer to
increment or decrement until we match
another table, I was able to do a palette fade
similar to Burnin' Rubber. Beginning the
fade at certain points in the level adds to the
realism.

Harrier Attack uses the kl_time_please function to record the passing of time so the game knows how
long each part of the level should be. So I had to add an interrupt with my own function to record the
time in a similar manner. Eventually I worked out how to do this using a 300th of a second interrupt
and two 16bit numbers which are incremented sequentially.

The game also uses the keyboard scanning functions of the firmware. So these needed to be replaced
too. I put a keyboard scanning function into the interrupt, to be called every 50th of a second, and then
replaced the firmware calls to check for keypresses with ones to check the buffer created by this
function instead. And it worked!

The palette fade to dusk and night created a new problem. The flight instruments would also change
colour with the main game screen, and this looked bad. As I had a timer and keyboard interrupt
running, I thought it might be a good idea to see if I could modify the palette in the interrupt too.
Programmers used to do this to get extra colours on the screen. I left the ASIC unlocked and paged in
by default. As the ASIC pages in over my
split screen memory, I only need to page
them out when I update the flight
instruments. It worked, but the palette was
unstable and flickered. I figured out that an
interrupt was being triggered while I was
updating the flight instruments, and
consquently I was trying to write my palette
data to the ASIC when it was paged out. I
added a variable to let the interrupt function
know the state of the ASIC, whether it is
paged in or out, and the palette split started
to function correctly.

Harrier Attack uses the same pen for drawing the sea and clouds. A timer counts down until the plane is
thought to be over land, and then the blue colour is changed to white. Using a split palette, I am able to
have sea and clouds using the same pen without having to use a timer to switch the colour. And I may
be able to use the other pens to do other things.

As I was creating a cartridge version for the
Plus machines, it would be nice to be able to
support the GX4000, which has no
keyboard. Although Harrier Attack could be
controlled by Joystick, you still needed to
use the keys to drop bombs and the escape
key to eject. A keyboard was also necessary
to control the menu to start the game and
enter your name into the highscore table.

I amended the highscore table so the player
is able to press the up and down directions
on the joystick to select a letter. Fire enters
the letter in the scoreboard, the left direction
deletes the last letter, and pressing fire when
no letter has been selected completes the
process. There is also a problem with the
limitation of a two button joypad. As there
are missiles and bombs to fire, there are no more buttons to press for controlling the ejector seat. Some
suggested using the pause button as an ejector button. I decided to create a function so the player could
choose what keys they wanted to use. Harrier Attack’s original keys were really awkward to use, so it is
handy being able to choose keys that are familiar to you.

Harrier Attack used the km_test_key firmware function. As I have no firmware in the cartridge, this
function had to be replaced. I tried creating my own function to read the keyboard, scan a table and
then workout which line and bit had been triggered. Running it while the game was playing slowed
everything down a lot. Instead I found that by using self-modifying code, I am able to insert a specific
line address and bit-checking function directly into the routine for moving the sprites. A lookup table
holds the 10 memory addresses of the lines populated by the keyboard scanner. There is a table of
opcodes for checking each bit in a byte. When the player redefines their keys, we work out what line
and bit has been triggered, and the appropriate line address and opcode are copied directly into function
to detect the keypress. It saves a lot of processing time.

As Harrier Attack used the Amstrad firmware for sound, I had to recreate some of the sound effects by
accessing the AY sound chip directly. It’s quite complicated to understand at first, but after working out
through extensive trial and error which registers produce which sounds, I was able to write a short
routine for calling the sounds from the main program events. I was going to use the Arkos Tracker
program, but unfortunately its player uses the shadow registers of the Z80. As I am already using the
shadow registers to speed up my interrupts, I decided to try to code my own routine. There is a buffer
for each sound channel, and every fiftieth of a second, this buffer is checked to see if it has been filled
by a command. If so, the bytes are loaded into the registers and the sound is played. As the AY chip has
no duration function, it plays your sound until you tell it to stop. This is not suitable for sound effects or
music, so I had to add an extra byte in the buffer to act as a timer. This byte is incremented every time

we call the routine, every fiftieth of a second, and if it equals the duration set by the calling function,
the channel is muted. I also made a ‘waitchannel’ function. It means the function will keep checking
the buffer to see if the sound has finished playing before it moves on to the next command. This is
useful for the ship’s horn, that sounds at the start and end of the mission. And of course, the
silencechannel command to mute the channels once the game has finished. It works well enough for
Harrier’s limited sound effects, though it would be handy to have proper envelopes for creating
complicated sounds, though that would require a bit more thought.

I also changed the night palette so it has a green tinge. This makes it look like ‘nightvision’ has been
activated. I altered some of the town building sprites to give the windows different colours to make it
look like the rooms are occupied.

Dropping bombs on the sea or land just causes them to disappear. I thought it might be a nice effect for
them to explode and leave a crater, so I adjusted the collision detection routine to allow for this. I
created a small 8x8 sprite with a hole in it, and whenever a bomb is dropped on the land, it will make a
low thud and leave a mark. It’s a nice touch that adds a bit more realism.

One of the big problems of using the AY sound chip raw is the lack of envelopes. The AY does have an
envelope function, which is quite handy, but the problem is if you use them, the volume parameter is
ignored and it plays at full volume. I needed a way of softening some of the explosion noises, so I made
my own volume fade routine. Using a status bit, I can tell my function whether to use a timer for the
duration of the noise and then silence the channel, or to lower the volume each time a number of steps
are counted down. This allows me to use both the volume control and envelopes, and have the sound
dissipate. The same technique could be used for reverb, or for more complicated sound effects.

