
Creating Oh Mummy Resurrected

Another great game that came free with the 
Amstrad is Oh Mummy. Its simple yet 
addictive gameplay made it a delight to play 
as a child. Its reliance on the keyboard for 
menu control means it cannot run on the 
GX4000, so I thought I would disassemble 
it and see if it is possible to convert it.

LOADing the BASIC loader into memory 
and disabling the final command that runs 
the game enables me to load the entire game 
into memory and then disassemble it using 
WinApe’s Z80 disassembler. Then it’s a case 
of separating the various functions by 
making a line break after every RETurn or 
JumP command. This is purely to make the code easier to read, so we are able to identify the main 
functions of the game.

After disassembling the code and improving the formatting, I look for areas of code that should be 
marked as DATA in the disassembler. These 
look like ‘nonsense’ Z80 commands when 
disassembled, so they are not too difficult to 
spot. I.E:-

ld h,a
ld h,l
ld h,l
etc

We know straight away this is data as it 
would be very inefficient programming if it 
was a real function. So we mark the 
appropriate area as DATA in WinApe’s 
disassembler and then disassemble it again 
and paste in the resulting DB statements into 
the appropriate place. Thankfully Oh 
Mummy’s code is well structured, and there 
were only two main data areas in the 
disassembled code. The first one contained 
all the text for the instructions, and the 
second one contained the sound, images, 
object map and other variables. For the 
instructions data area, I worked out the corresponding letters for the hexadecimal numbers and inserted 
them instead, to make it more accessible.



Firmware calls

Once we identify the areas of data, we can look to see if there are any firmware calls in the code. As the 
Plus cartridges do not contain any firmware, these will need to be replaced with our own functions. So 
we look to see what calls are made, usually any command starting with &BB, &BC or &BD is a 
firmware command. So we look up the firmware manual to see what these do and define names for 
them. This will give us an idea of what commands we will need to create to get the game to run.

Unfortunately in Oh Mummy there is quite a lot of reliance on the firmware. The interface uses the 
firmware font, as well as pen, paper and window functions. These will need to be replaced by our own 
code. The sound effects and music use the Sound Manager envelopes, tone and sound queue 
commands. So these will need to be replaced as well. Then there are the keyboard reading functions 
and timer. The keyboard, sound and timer functions require the use of interrupts, which are built into 
the firmware, but we will need to be recreate them for it to work in cartridge form.

Music

The music data in Oh Mummy seems to be a 
series of SOUND statements that are played 
sequentially. So we will need to download 
the Streets of Cairo music score from the 
internet and recreate this so it will work 
with my Cpsoundeffects.asm code. 
Interestingly, the original programmer did 
not use interrupts to check to see whether 
the sound buffer was empty in order to 
decide whether or not to play the next note. 
They just called their music function 
repeatedly throughout the game. So once we 
get our own music system working, we can 
remove this inefficient code.

Sprites

Identifying the main functions of the game 
helps us to know which data statements are 
sound, images or text. It is then just a case 
of labeling each data statement accordingly. 
If in doubt, we can for instance, set all the 
mummy graphics to a single image to see which one points left, right, up or down, etc. Once we get the 
game running with the Plus ASIC enabled, it will be possible for us to design multicoloured sprites that 
will replace these single coloured ones.



Loading Screen

I wanted to see what a loading screen would 
look like on the Amstrad Plus. So I scanned 
the inlay card of my copy of Oh Mummy, 
and converted it to the Plus palette and 
resolution. This is done using a program 
ConvImgCPC. The results are quite pleasing 
as the source image uses mostly shades of 
orange. One thing I did need to do is adjust 
the brightness up to 163%. This gives a 
more pleasing spread of colours. The Plus 
colour palette spread is uneven and biased 
towards lighter colours, so increasing the 
image brightness overcomes this problem.

It is then just a case of saving the palette, and saving the image to an ASM file, which we will use as a 
loading screen. I may either add a title manually or use Plus sprites to create a title and place it on the 
image.

Errors in disassembling

The main code for Oh Mummy is located at &6000. But I found whenever I relocated this to &1000 by 
changing the ORG command, graphical items in the menu would be out of sync. Also, the Guardian 
Mummy’s tomb would not open correctly. Checking the code, I found the disassembler had mistakenly 
given labels to some hex values that were meant to be just coordinates. So the code was treating 
coordinates as a memory address to look up. Once this was corrected, the game could be correctly 
compiled at different addresses. Starting at &0100, I found I could compile the entire game within the 
first 16K bank of RAM (&0000 to &3FFF). This gives us plenty of spare memory to work with.

The next stage

So the next stage will be recreating the text 
and interface commands to use our own 
functions. As the firmware functions can’t 
be called from a cartridge, this testing will 
need to be done in WinApe’s own 
assembler. 

Pen, paper, ink

The graphic functions I replaced using my 
own code were txt_output, txt_set_window, 
txt_set_cursor, txt_set_paper, txt_set_pen 
and txt_clear_window.



Whenever I replaced txt_output with my own text printing function from Harrier Attack Reloaded, I 
realized Oh Mummy was using a lot of ASCII control codes to execute additional graphics commands, 
such as setting the mode, border and ink colours, paper and pen colours and specifying cursor location. 
These are passed to txt_output as if they are normal characters, only the firmware interprets them 
accordingly. So I needed to replicate these codes in my own function. Looking up what function each 
code performed, I soon had the locate function working, as well as defining and clearing text windows 
and setting inks and pens.

One particular problem I came across was setting the paper and pen for text. Using a combination of 
OR, AND and XOR while copying the character data to the screen, I was able to change the colour of 
the pen and paper of text. These commands invert and rearrange the bits in the byte, which changes the 
colour on the screen. I had to make a careful note of which combinations produced which colours. But 
how to allow the program to set the colour by pen and paper numbers was a more difficult problem to 
solve. In the end I decided to make a lookup table. The table contains the pure machine code to produce 
a particular pen and paper combination. Whenever the program wants to change the colour, it looks up 
this table, with PEN number on the vertical axis and PAPER number on the horizontal axis. The chosen 
code, just 4 bytes, are copied directly into the letter printing function at the appropriate places 
producing the correct colour for the particular combination. I’m not sure how the BASIC firmware 
accomplishes this task.

Compiling the cartridge

As the main code for Oh Mummy can fit in the first 16k of memory, I was able to reuse the memory 
structure of the Harrier Attack Reloaded. This saves me having to redesign the boot sequence for the 
cartridges and the loader code for the discs and tapes. The file structure and the bash files for compiling 
the game can also be copied over without needing too many changes. I am able to just replace the 
loading screen with an Oh Mummy picture and change the filenames on the disc and tape and 
everything works the same. As the font data was causing the code to run past &4000, I moved it to the 
second block of code at &C100, where I will put all the extra functions I create for the Plus version. A 
jump block at the start of this memory enables us to call the functions from the main program as 
necessary.

Menus

In order to allow joystick control of the 
menus, I thought it would be best to move 
the main menu options into the centre of the 
screen, using the high score table layout. So 
I crushed up the high scores, and used a > 
sign to allow the user to select the menu 
items. The option screen also had to be 
changed so it could be accessed via the 
joystick, so I modified the layout so all the 
options are displayed on the high score table 
and can be changed using the left and right 
directions.



Blinking cursors

Rather than spend a lot of time redesigning the code of the scoreboard name entry to allow input via 
joystick, I decided to just copy and paste my code from Harrier Attack Reloaded straight into Oh 
Mummy. I didn’t think it would work but it did, straight off, just by telling it where to position the text 
and where the name is stored in memory. The only problem is, the mummies do not move in the 
background while the user is entering their name. I found when I enabled them, the text would get 
printed in the wrong colour. So I will need to look at that.

Music score

 
As I have no access to the Amstrad firmware Sound Manager, I need to recreate the music from 
scratch. I imported the CPSoundEffect.asm functions I created for Harrier Attack Reloaded for making 
the music, and looked for a suitable score for Streets of Cairo online. I look for one that makes good 
use of the AY’s sound channels. Not too complicated, but has a few chords, and still leaves a channel 
free for sound effects. I eventually found one. Then it is a case of manually working out which notes 
correspond to which frequencies on the Amstrad and typing them into our music data block.

I may need to modify it, as I find the rhythm in the original version more catchy than this rendition.

Redefinable keys

I imported my redefinable keys functions from Harrier Attack Reloaded and inserted the appropriate 
code into the option screen in Oh Mummy. I included the two player key detection code just in case I 
decide to make a two player version of Oh Mummy later on. I will need to amend the main character 
movement function so it uses my own keypress detection routines.



Mummies in the menu

There is a bit of a problem with the game speed and the mummies moving in the menu. There is a delay 
loop which slows the mummy and player movement down to the appropriate speed. The problem is, the 
mummies moving in the menu also depend on this loop to gauge their speed. Because of this, the menu 
selection code is also being slowed down. I may need to move the mummy and player speed code into 
an interrupt so it doesn’t affect the menu selection. The game speed function may need to be reworked.


