Creating Oh Mummy Resurrected

Another great game that came free with the
Amstrad is Oh Mummy. Its simple yet
addictive gameplay made it a delight to play
as a child. Its reliance on the keyboard for
menu control means it cannot run on the
GX4000, so I thought I would disassemble
it and see if it is possible to convert it.

"OH MUMMY" © 1384 GEM 50FTHARE

LOADing the BASIC loader into memory |
and disabling the final command that runs oo cone e
the game enables me to load the entire game
into memory and then disassemble it using
WinApe’s Z80 disassembler. Then it’s a case
of separating the various functions by
making a line break after every RETurn or
JumP command. This is purely to make the code easier to read, so we are able to identify the main
functions of the game.

After disassembling the code and improving the formatting, I look for areas of code that should be
marked as DATA in the disassembler. These
look like ‘nonsense’ Z80 commands when e WINAPE 260 Assembler L

disassembled, so they are not too difficult to | -=
spot. L.E:-

1d h,a]
1d h,1 sesne e e
Id h,1

etc

We know straight away this is data as it
would be very inefficient programming if it
was a real function. So we mark the
appropriate area as DATA in WinApe’s
disassembler and then disassemble it again
and paste in the resulting DB statements into
the appropriate place. Thankfully Oh
Mummy’s code is well structured, and there

1ld hl,scundtonel

were only two main data areas in the < 7
disassembled code. The first one contained

all the text for the instructions, and the iy | Ohvmammys | Ohmammys | Ohmammy? | Ghmammys |, Ohumimys| Loaders | fharmieratiackiomstradfonts | (818
second one contained the sound, images, 2

object map and other variables. For the

instructions data area, I worked out the corresponding letters for the hexadecimal numbers and inserted
them instead, to make it more accessible.

Firmware calls

Once we identify the areas of data, we can look to see if there are any firmware calls in the code. As the
Plus cartridges do not contain any firmware, these will need to be replaced with our own functions. So
we look to see what calls are made, usually any command starting with &BB, &BC or &BD is a
firmware command. So we look up the firmware manual to see what these do and define names for
them. This will give us an idea of what commands we will need to create to get the game to run.

Unfortunately in Oh Mummy there is quite a lot of reliance on the firmware. The interface uses the
firmware font, as well as pen, paper and window functions. These will need to be replaced by our own
code. The sound effects and music use the Sound Manager envelopes, tone and sound queue
commands. So these will need to be replaced as well. Then there are the keyboard reading functions
and timer. The keyboard, sound and timer functions require the use of interrupts, which are built into
the firmware, but we will need to be recreate them for it to work in cartridge form.

Music

The music data in Oh Mummy seems to be a |- WinAPE 260 Assembler + x
series of SOUND statements that are played =l T .
sequentially. So we will need to download :

set_ent

the Streets of Cairo music score from the
internet and recreate this so it will work
with my Cpsoundeffects.asm code.
Interestingly, the original programmer did
not use interrupts to check to see whether
the sound buffer was empty in order to
decide whether or not to play the next note.
They just called their music function
repeatedly throughout the game. So once we
get our own music system working, we can
remove this inefficient code.

scoredata ; RESET MUSIC POSITION TO START

Sprites

Identifying the main functions of the game
helps us to know which data statements are
sound, images or text. It is then just a case T T S T o TS e | T T s

of labeling each data statement accordingly. L

If in doubt, we can for instance, set all the

mummy graphics to a single image to see which one points left, right, up or down, etc. Once we get the
game running with the Plus ASIC enabled, it will be possible for us to design multicoloured sprites that
will replace these single coloured ones.

< >

3 v ConvIimgCpc Version 0.16 (Build Dec 22 2010 09:42:05) - %
Loading Screen

I wanted to see what a loading screen would
look like on the Amstrad Plus. So I scanned
the inlay card of my copy of Oh Mummy,
and converted it to the Plus palette and
resolution. This is done using a program
ConvImgCPC. The results are quite pleasing
as the source image uses mostly shades of
orange. One thing I did need to do is adjust
the brightness up to 163%. This gives a
more pleasing spread of colours. The Plus
colour palette spread is uneven and biased
towards lighter colours, so increasing the

¢

r
r

image brightness overcomes this problem. |z CT Tl ToT=T-T-T T T o R

& Nodiheing [Smooting
€ Tupe 1 dithering

Green [163 % " Type 2 dithering

€ Type 3 diheing

1 of colo
colers - 3564196
Seek al lhe 16 mast used colors

3 d colors : 1926 1542 2214 1637 2230 4095 4089 2535

163 % @2 oncess pass 2
s i

It is then just a case of saving the palette, and saving the image to an ASM file, which we will use as a
loading screen. I may either add a title manually or use Plus sprites to create a title and place it on the
image.

Errors in disassembling

The main code for Oh Mummy is located at &6000. But I found whenever I relocated this to &1000 by
changing the ORG command, graphical items in the menu would be out of sync. Also, the Guardian
Mummy’s tomb would not open correctly. Checking the code, I found the disassembler had mistakenly
given labels to some hex values that were meant to be just coordinates. So the code was treating
coordinates as a memory address to look up. Once this was corrected, the game could be correctly
compiled at different addresses. Starting at &0100, I found I could compile the entire game within the
first 16K bank of RAM (&0000 to &3FFF). This gives us plenty of spare memory to work with.

The next stage

hd Windows Amstrad Plus Emulator (WinAPE) 2.0 Beta 2 + %
File Settings Debug Assembler Help

So the next stage will be recreating the text
and interface commands to use our own
functions. As the firmware functions can’t
be called from a cartridge, this testing will
need to be done in WinApe’s own
assembler.

Pen, paper, ink

The graphic functions I replaced using my
own code were txt_output, txt_set_window,
txt_set_cursor, txt_set_paper, txt_set_pen
and txt_clear_window. 0 TEEEE TR o=

Whenever I replaced txt_output with my own text printing function from Harrier Attack Reloaded, I
realized Oh Mummy was using a lot of ASCII control codes to execute additional graphics commands,
such as setting the mode, border and ink colours, paper and pen colours and specifying cursor location.
These are passed to txt_output as if they are normal characters, only the firmware interprets them
accordingly. So I needed to replicate these codes in my own function. Looking up what function each
code performed, I soon had the locate function working, as well as defining and clearing text windows
and setting inks and pens.

One particular problem I came across was setting the paper and pen for text. Using a combination of
OR, AND and XOR while copying the character data to the screen, I was able to change the colour of
the pen and paper of text. These commands invert and rearrange the bits in the byte, which changes the
colour on the screen. I had to make a careful note of which combinations produced which colours. But
how to allow the program to set the colour by pen and paper numbers was a more difficult problem to
solve. In the end I decided to make a lookup table. The table contains the pure machine code to produce
a particular pen and paper combination. Whenever the program wants to change the colour, it looks up
this table, with PEN number on the vertical axis and PAPER number on the horizontal axis. The chosen
code, just 4 bytes, are copied directly into the letter printing function at the appropriate places
producing the correct colour for the particular combination. I’m not sure how the BASIC firmware
accomplishes this task.

Compiling the cartridge

As the main code for Oh Mummy can fit in the first 16k of memory, I was able to reuse the memory
structure of the Harrier Attack Reloaded. This saves me having to redesign the boot sequence for the
cartridges and the loader code for the discs and tapes. The file structure and the bash files for compiling
the game can also be copied over without needing too many changes. I am able to just replace the
loading screen with an Oh Mummy picture and change the filenames on the disc and tape and
everything works the same. As the font data was causing the code to run past &4000, I moved it to the
second block of code at &C100, where I will put all the extra functions I create for the Plus version. A
jump block at the start of this memory enables us to call the functions from the main program as
necessary.

Menus

- ‘Windows Amstrad Plus Emulator (WinAPE) 2.0 Beta 2 + X
File gettings Debug Assembler Help

In order to allow joystick control of the
menus, I thought it would be best to move
the main menu options into the centre of the
screen, using the high score table layout. So
I crushed up the high scores, and used a > HI-SCORE TABLE
sign to allow the user to select the menu
items. The option screen also had to be
changed so it could be accessed via the
joystick, so I modified the layout so all the
options are displayed on the high score table
and can be changed using the left and right
directions.

Stupendous |
Excel Lent

v GEGEE
E==mn

TOH NENEN
~13 QULEE
actn QEEEE

(=]
o game

tructions
ns

n 1] Hom® s oo ? Speed:100% FPS: 49

Blinking cursors

Rather than spend a lot of time redesigning the code of the scoreboard name entry to allow input via
joystick, I decided to just copy and paste my code from Harrier Attack Reloaded straight into Oh
Mummy. I didn’t think it would work but it did, straight off, just by telling it where to position the text
and where the name is stored in memory. The only problem is, the mummies do not move in the
background while the user is entering their name. I found when I enabled them, the text would get
printed in the wrong colour. So I will need to look at that.

Music score

The Streets of Cairo - Ukulele and Guitar Sheet Music and Tab for Guitar (Mixed Duet) | MuseScore.com — Mozilla Firefox + %

(=] @ The Streets of Cairo - Ukulele x SIS

« > C & O B & musescore.com/u cores/5335809 In @ & @ » #H =
) The Streets of Cairo . {§§ Amstrad CPC charact.. StaffVacancies-Ca.. » (3)CCB Family Servic.. 9 Qualifications -SERC s Student Intranet - H... SafeGuard | Plusnet # CustomSizeFlyersP.. + (162)Where AreWe-~.. 3> [J Other Bookmarks
2 ; ;
[y musescore Search for sheet music Q Scores Courses Songbooks News Start Free Trial © Upload a # chrisperver v
. &9
! : .
P) cooson I on b ¢ mMea The Streets of Cairo - Ukulele and
_———— 7
Guitar
04 —_— —_—
"‘Q e et e . e et e e ﬂbrem-a:ron Follow
Ukulele
" 2 0 @371 98 D3 ¥45(5
£ -0—2- 2 -0- -0—2- 2—3—0: -0—2- 2 -0 -0—2- 2 0
#
o4 Guitar v
oAy -y ¥y T r 1 r |
Pl - - S -
Guitar (Drop " N
” D tuning) /= I I ; !) 1+ Download @ Print
] T
2 A 2 2 2 2 i— 2
& ! 1 Q Favorite &3 share
Z »
] —+ Addto Set) Edit on desktop
=
= f-4 r — i i o —— — :
g rr et es s ierrted , sdied, & & &
Today's top users @
=
#
@ #1 z2¢3306 03:11:41
W e foy 1 = ! I]
=== L SeiEE=E airerlreas = = -
=== = = #2 nansou0518 02:04:50
T T T T]
7y i i ! i i @ #3 ftkwd48kq? 01:28:26
B T T T T 1
[= WA -

As I have no access to the Amstrad firmware Sound Manager, I need to recreate the music from
scratch. I imported the CPSoundEffect.asm functions I created for Harrier Attack Reloaded for making
the music, and looked for a suitable score for Streets of Cairo online. I look for one that makes good
use of the AY’s sound channels. Not too complicated, but has a few chords, and still leaves a channel
free for sound effects. I eventually found one. Then it is a case of manually working out which notes
correspond to which frequencies on the Amstrad and typing them into our music data block.

I may need to modify it, as I find the rhythm in the original version more catchy than this rendition.
Redefinable keys

I imported my redefinable keys functions from Harrier Attack Reloaded and inserted the appropriate
code into the option screen in Oh Mummy. I included the two player key detection code just in case I

decide to make a two player version of Oh Mummy later on. I will need to amend the main character
movement function so it uses my own keypress detection routines.

Mummies in the menu

There is a bit of a problem with the game speed and the mummies moving in the menu. There is a delay
loop which slows the mummy and player movement down to the appropriate speed. The problem is, the
mummies moving in the menu also depend on this loop to gauge their speed. Because of this, the menu
selection code is also being slowed down. I may need to move the mummy and player speed code into
an interrupt so it doesn’t affect the menu selection. The game speed function may need to be reworked.

